Notizen Notizen

Diffraction Pattern and Layer Structure of a Quasilattice

P. Kramer and L. Kramer

Institut für Theoretische Physik der Universität Tübingen

Z. Naturforsch. **40 a**, 1162–1163 (1985); received September 5, 1985

Structure calculations are reported for a quasilattice associated with the icosahedral group. The diffraction pattern is computed in a one-center and long-range approximation and compared to experiments on Al + 14% Mn. Edge and vertex positions of the quasilattice are computed in a projection onto a plane with a layer structure.

In this note we report on computations for a quasilattice associated with the icosahedral group described in [1, 2]. For simplicity we assume that there is a single atomic center at each vertex. The diffraction pattern is computed in the long-range approximation formulated in section 5 of [2]. The δ -distributions of Eq. (5.24) have been replaced by distributions of the finite width $0.25 \, \pi \, L^{-1}$. The position of points in **K**-space is characterized from Eqs. (5.21, 5.22) by

$$\mathbf{K} = L^{-1} 2\pi \frac{1}{2} \sum_{i} h_{i} \mathbf{e}_{i}, \quad h_{i} = 0, \pm 1, \pm 2, \dots,$$
 (1)

where the six vectors e_i are unit vectors perpendicular to six pairs of faces of the regular dodecahedron and where L is the edge length of the rhombohedral cells. In the long-range approximation only three of the numbers h_i are non-zero. The resulting diffraction patterns are displayed in Figures 1–3. The strong peaks result from interference between several different sublattices and are characterized by pairs of Fibonacci numbers. In Table 1 we give an index system for some peaks in the plane perpendicular to the 5-fold axis.

The icosahedral diffraction pattern observed by Shechtman et al. [3] and by Bancel et al. [4] results from Al + 14% Mn and so requires two types of centers which in general would not be located in vertex positions. Disregarding these refinements we have tentatively identified the peak c observed in [4] according to Table 1, to obtain for the edge length the value

$$L = 8.8 \text{ Å}. \tag{2}$$

With the same model of a single atomic center at each vertex, the quasilattice was computed for a fixed set of parameters $\gamma_1, \gamma_2, \ldots, \gamma_6$. Figures 4 and 5 show a view through the quasilattice along the direction of the fixed vector e_6 . The index k_6 is varied as $k_6 = -5, -3, -1, 1, 3, 5$. Figure 4 gives the resulting edges and Fig. 5 the resulting

Table 1. Index system for the strongest diffraction peaks corresponding to Fig. 3 and tentative comparison with experimental work of Bancel et al. [4].

Index system							
						Notation of [4]	$Q/Å^{-1}$
h_1	h_2	h_3	h_4	h_5	h_6	01 [4]	
0	0	3	3	0	0	С	1.876
- 5	0	0	0	0	5		
0	0	5	5	0	0	d	3.043
- 8	0	0	0	0	8	_	
0	0	8	8	0	0	f	4.928
-13	0	0	0	0	13		

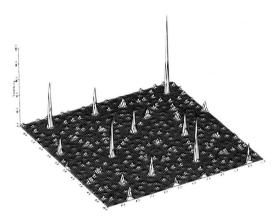


Fig. 1. Computed diffraction pattern in a plane perpendicular to the 5-fold axis. The numbers give the scale for the vector $\pi^{-1} L K$, where L is the edge length of the rhombohedral cell.

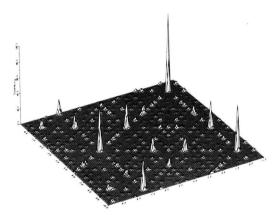


Fig. 2. Computed diffraction pattern in a plane perpendicular to the 3-fold axis.

Reprint requests to Prof. Dr. P. Kramer, Auf der Morgenstelle 14, D-7400 Tübingen 1.

0340-4811 / 85 / 1100-1162 \$ 01.30/0. – Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Notizen 1163

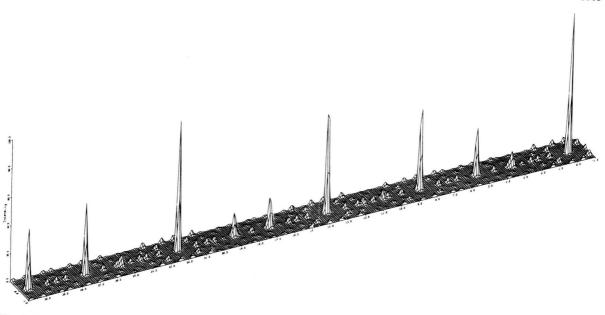


Fig. 3. Computed diffraction pattern along a line in the plane as in Figure 1.

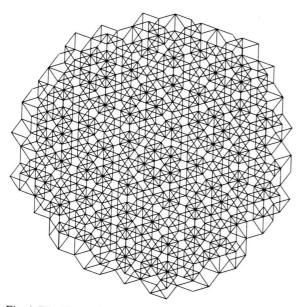


Fig. 4. Edge lines of the quasilattice seen along the direction of the vector e_6 .

projected vertex positions. Note that the projected edge length in this plane is

$$L \cdot 2\theta = L \cdot 0.89442. \tag{3}$$

The projection includes six layers of the type described in Sect. 8 of [2].

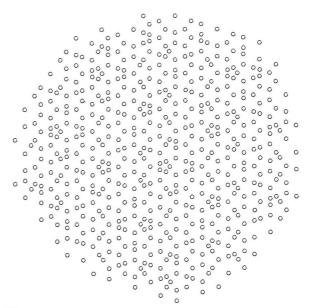


Fig. 5. Vertex positions of the quasilattice marked as circles seen along the direction of the vector e_6 .

- P. Kramer and R. Neri, Acta Cryst. A 40, 580 (1984).
 P. Kramer, Z. Naturforsch. 40a, 775 (1985).
 D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).
- [4] P. Bancel, P. A. Heiney, P. W. Stephens, A. I. Gold-man, and P. M. Horn, Phys. Rev. Lett. 54, 2422 (1985).